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The figure is stepping forward. Her right 
foot is located in front of her torso with 
her right knee nearly bent. Her left knee is 
bent and her left leg is behind her body. 
The arms are extended horizontally to the 
sides. The head is looking down to the right.

Posescript MDM* MoMask* Ours

Figure 1: Our Semantic Mask Transformer (SMT) can generate high-quality 3D human poses aligned with the detailed text
descriptions while existing methods suffer from semantic absences, highlighted in red.

Abstract

Previous methods for generating 3D human poses from de-
tailed text descriptions often encounter semantic mismatches
and struggle to produce precise local body part actions. These
challenges primarily arise from the limited variety of body
part action combinations in existing datasets. To address these
issues, we introduce the Semantic Mask Transformer (SMT),
a text-driven animation framework designed to synthesize 3D
poses that closely align with detailed textual descriptions. The
key innovation of SMT lies in its integration of semantic bi-
ases derived from a Large Language Model into the train-
ing objectives, thereby enhancing local semantic consistency.
Equipped with mask data augmentation, body part modeling,
and semantic bias training objectives, our SMT effectively
generates high-quality poses while maintaining accurate se-
mantic alignment with the input descriptions. Furthermore,
the ablation study demonstrates that the semantic bias objec-
tives can be applied across various backbone architectures.

Introduction
This paper tackles the challenge of text-to-pose generation,
which involves generating a plausible and realistic 3D hu-
man pose from a detailed textual description. This capability
is highly desirable in the gaming and film industries, where
automated and accurate pose generation from detailed text
description can significantly enhance visual storytelling and
character animation ((Lan et al. 2023), (Zhao et al. 2022),
(Chen, Peng, and Zhou 2021)). The process requires exten-
sive textual input, specifying an overall action label and de-
tailed descriptions of individual body parts and their relative
positions. The complexity of this task lies in generating a
pose that is consistent with the overall action label and aligns
with the semantic requirements of the detailed description.

To generate poses from detailed text descriptions,
Posescript (Delmas et al. 2022) employs a contrastive
Language-Pose training approach to align the pose latent
space with the textual space. Chatpose (Feng et al. 2023)

quantizes human poses into distinct signal tokens within a
multimodal LLM, enabling the direct generation of 3D body
poses from both textual and visual inputs. PRO-Motion (Liu
et al. 2023) introduces a posture diffusion model to gener-
ate human poses with text descriptions from GPT-like Large
Language Model(LLM) (Brown et al. 2020).

However, existing approaches typically face challenges
such as semantic mismatches or overlooking body part ac-
tions, which limit models to simple text descriptions. When
prompts involve complex descriptions that require the co-
ordination of multiple body parts, the resulting poses often
omit certain parts. Our analysis identifies that shortcoming
of these methods mainly comes from the combination bias
regarding body part actions in the dataset, which compli-
cates the model’s ability to handle unseen combinations of
previously observed body part actions. For example, in Fig 2
consider the action ”The right hand is in front of the face.”.
This action is frequently paired with the detail that ”Stand
with feet shoulder-width apart”. Thus, when tasked with
generating a pose from the combination of ”Stand on his
left leg” and ”The right hand is in front of the face.”, the
model fails to include the action of raising the right hand in
the generated pose due to their training on more common,
less varied combinations.

To mitigate the combination bias in the dataset and gener-
ate diverse animations, SINC (Athanasiou et al. 2023) em-
ploys LLM to decompose text descriptions for each body
part, thereby creating a limited, unbiased spatial composi-
tion synthesis dataset for text-to-motion generation. Lgtm
(Sun et al. 2024) further trains text-to-motion models for
each body part to capture local semantic consistency. Given
that textual descriptions for human pose generation are con-
siderably more complex and often involve specific coordi-
nation and alignment of multiple body parts, they cannot be
easily segmented into body part captions or simply recom-
bined to yield consistent descriptions. The combination bias



This person is standing with feet shoulder 
width apart .The right arm is bent at the 
elbow, with the hand in front of the face.

This person is standing on his left leg. 
The right arm is bent at the elbow, 
with the hand in front of the face.

posescript (2022)

Figure 2: Posescript (Delmas et al. 2022) suffers from the
body part combination bias in the dataset (The action ”right
hand in front of the face” combines more frequently with
”standing with feet shoulder width”) which complicates the
model’s ability to handle unseen combinations of previously
observed body part actions.

of body part actions hinders the model’s ability to learn the
joint distribution of textual descriptions and body part ac-
tions. Consequently, we introduce the semantic bias from
LLM into the loss function to strengthen the connection be-
tween body part actions and their corresponding textual de-
scriptions. To achieve this, we randomly mask the textual de-
scriptions at the sentence level to create semantically biased
descriptions that involve limited body parts. The loss ob-
jective is then computed only on the semantic-related body
parts to establish a more precise association between spe-
cific body part actions and their corresponding textual de-
scriptions. The semantic bias is effectively represented as
a binary loss mask generated by LLM for each body part,
where semantically related body parts are assigned a value
of 1, while all other body parts are assigned a value of 0.

Our method, named the Semantic Mask Transformer, in-
tegrates a mask transformer with a body part vector quantize
autoencoder(BPVQ-VAE) to specifically address the chal-
lenges of generating human poses semantic consistent with
detailed text description. Specifically, we tackle the issue of
combination bias at three distinct levels. At the model level,
we adopt the BPVQ-VAE which encodes body parts actions
into separated tokens. At the data level, the mask transformer
is trained as a generative masked model(Chang et al. 2022).
The input of the mask transformer consists of a sequence
of masked body part tokens sequence and independently
masked text descriptions, which mitigates the combination
bias at both the body part and textual description levels. Re-
garding the loss function, since we apply a text mask at the
sentence level to accommodate a variety of descriptions, the
loss function is computed exclusively on the semantically
relevant body parts, which serve as the semantic bias.

To evaluate the effectiveness of our proposed semantic
bias loss function, we conducted experiments using vari-
ous backbone architectures. The ablation studies demon-
strate that the semantic bias loss function can be applied
across different pipelines to enhance the semantic consis-
tency between body part actions and their corresponding
text descriptions. Comparative experiments indicate that our
proposed framework generates vivid human pose semantics
that are consistent with detailed text descriptions and out-

performs state-of-the-art methods. Notably, we are the first
to utilize semantic bias extracted from LLM as a binary loss
mask for animation generation.

In summary, our contributions are as follows:
• We are the first to integrate semantic biases derived

from the semantic prior of LLM into training objectives,
thereby enhancing body part semantic consistency in hu-
man pose generation.

• We propose a framework that addresses the challenge
of pose generation based on detailed text descriptions
by leveraging mask data augmentation, body part mod-
eling, and semantic bias loss objectives. With body part
modeling and masking, we mitigate the combination bias
of body part actions. The application of text description
masking and semantic bias objectives enables our model
to establish accurate connections between body part ac-
tions and their corresponding descriptions.

• Our framework achieves state-of-the-art performance in
the challenging task of maintaining semantic consistency
between generated poses and detailed text descriptions.

Related Work
Generative Masked Modeling. BERT(Devlin et al. 2018)
introduces a masked modeling approach for language tasks,
where word tokens are randomly masked at a fixed ratio,
and a bidirectional transformer is then tasked with predicting
these masked tokens. MAE (He et al. 2022) introduces mask
modeling into computer vision as a pre-training task. While
MAE serves as a robust pre-trained encoder, it cannot syn-
thesize novel samples. Addressing this limitation, MaskGIT
(Chang et al. 2022) proposes an innovative approach where
tokens are masked at a variable and traceable rate controlled
by a scheduling function, allowing for the iterative synthe-
sis of new samples following the scheduled masking. Muse
(Chang et al. 2023) applies this to text-to-image editing,
demonstrating the versatility of masked modeling in creative
tasks. Magvit (Yu et al. 2023) introduces a versatile masking
strategy tailored for multi-task video generation. MoMask
(Guo et al. 2023) introduces generative masked modeling
for human motion synthesis. An advantage of mask model-
ing is that it could generate a variety of masked body part
combinations which could break the combination bias.
Text-conditioned Human Motion Synthesis. Posescript
(Delmas et al. 2022) links the 3D human pose with the nat-
ural language by mapping 3D poses and textual descriptions
into a joint embedding space. ChatPose (Feng et al. 2023)
employs Large Language Models to understand and reason
about 3D human poses from images or textual descriptions
by embedding SMPL poses as distinct signal tokens within
a multimodal LLM which can generate human poses from
images and textual descriptions.

Human motion synthesis is a domain related to human
pose generation, which aims to synthesize human motion
sequences with text conditions. TEMOS (Petrovich, Black,
and Varol 2022) leverages variational autoencoder to pro-
duce human motion distribution with textual descriptions.
T2M (Guo et al. 2022) presents a temporal variational au-
toencoder to synthesize human motions of different lengths



from text input. MDM (Tevet et al. 2022) introduces a
diffusion-based generative model for human motion gener-
ation. MLD (Chen et al. 2023) applies the latent diffusion
model to improve motion quality and speed up the gener-
ation process. Momask (Guo et al. 2023) proposes a mask
transformer combined with a vector quantize autoencoder to
generate human motion sequences based on the text descrip-
tion.

The primary distinction between detailed text-conditioned
human pose generation and text-to-motion generation lies in
the complexity and specificity of the text descriptions. For
human pose generation, the text descriptions are highly de-
tailed, focusing on specific body part actions and their rel-
ative positions, which necessitates a greater emphasis on
body part semantic consistency. This raises higher demands
for semantic accuracy and detail in pose generation com-
pared to motion generation.
Part-based Motion Modeling. Separating the human body
into distinct segments facilitates the control of motion syn-
thesis at a more granular level, allowing for precise body
part control and alignment. PAN (Hu et al. 2023) encodes
body part motion into separate features to introduce body
part correspondence prior information into motion retarget-
ing. Motion Puzzle (Jang, Park, and Lee 2022) performed
style transfer at the part level, utilizing a graph convolutional
network to assemble different body part motions into new,
coherent sequences, preserving local styles while transfer-
ring them to specific body parts without compromising the
integrity of other parts or the entire body. LGTM (Sun et al.
2024) employs a large language model to decompose tex-
tual descriptions into part-specific narratives and train inde-
pendent body-part motion encoders to ensure precise local
semantic alignment.
Spatial Composition Synthetic Data Training with spatial
composition synthetic data is another way to remove the in-
fluence of the dataset bias about the combination of body
part action. SINC (Athanasiou et al. 2023) creates spatial
composition synthesis data with the help of LLM for the
text-to-motion generation BMSS (Soga et al. 2016) synthe-
sized dance motions from existing datasets by focusing on
body partitions. Chimera (Lee, Lee, and Lee 2022) com-
pose part animations from a collection of source anima-
tions and refine it by a policy trained with reinforcement
learning. However, it can only synthesize simple and low-
quality human motion and has limited effectiveness in text-
to-pose, particularly when faced with more challenging de-
scriptions. For instance, consider the complex action de-
scribed as ”bending over with two hands touching feet”. This
pose involves specific coordination and alignment of multi-
ple body parts which can not be synthesized with body part
actions.

Method
Our goal is to generate a 3D human pose with a detailed
textual description c. Our framework comprises two com-
ponents: body part VQ-VAE(BPVQ-VAE) and mask trans-
former. To mitigate the combination bias present in the
dataset, we employ semantic bias training for the mask

transformer, which includes text description masking, se-
mantic mask extraction, and semantic bias computation.
This approach aims to reduce the influence of combination
bias. We will provide an overview of each component in the
order of their training.

Body-Part Quantization
Graph neural network has been proven to be a responsible
structure to model human topology (Zhang et al. 2024). We
model the human pose as a graph according to the skeleton
hierarchy where each node corresponds to a joint and each
edge represents a directed connection between joints. The
pose data can be considered as node features fnode ∈ R9,
which encompass the 6D joint rotation representation and
3D local joint positions.

The BPVQ-VAE consists of a graph encoder and a graph
decoder, with unique quantization layers for each body part
that map body-part features into tokens from learned code-
books. Specifically, We manually divide the human body
into 6 parts: left arm, right arm, left leg, right leg, main
body, and head. After the human pose is encoded into fea-
tures f ∈ RJ×D with number of joints J and latent dimen-
sion D, the features are grouped by body part group and
construct body part features b̂1:N ∈ RD by group pool-
ing where N is the number of body parts. Each body part
features are replaced with its nearest code in the codebook
which is known as quantization Q(.). The quantized body
part code bi = Qi(b̂i) is mapped to the origin graph where
the joints in the same body part share the quantized code.
The graph decoder projects node features into human pose
P ∈ RJ×6 to get 6D rotation for each joint.

To reduce quantization errors, we adopt residual quantiza-
tion(Yang et al. 2023) denotes as RQ(.) for the quantization
layers that iteratively quantize the body part features which
is similar to (Guo et al. 2023). The residual quantization rep-
resents body part features b̂ as L ordered code sequences
RQ(b̂) = [bl]Ll=0. It works as

bl+1 = Q(rl+1), rl+1 = rl − bl (1)

The final quantized result is the sum of the entire sequence,
which is fed into the graph decoder to reconstruct the human
pose. Similar to the (Guo et al. 2023), we adopt the indices
of the selected codebook entries (namely body part tokens)
as the alternative discrete representation. The BPVQ-VAE
is trained with reconstruction loss and commit loss. the re-
construction loss is computed as the geodesic loss between
the reconstructed joint rotation matrix and the ground truth
rotation matrix.

Lrec =

J∑
j=1

arccos

(
tr(RjR̂

T
j )− 1

2

)
(2)

Where J refers to the number of joints, R̂j is the ground
truth rotation matrix of j joint while Rj is the prediction.
The commit loss is computed as:

Lcom =

N∑
i=1

L∑
j=1

∥zi,j −Q(zi,j)∥2 (3)



Figure 3: Semantic Bias Training for the Mask Transformer. Through textual description masking, we create semantically
biased descriptions that do not encompass all body parts. Subsequently, a semantic mask mb

1:N is generated by LLM, indicating
whether a body part is semantically related to the descriptions. This semantic mask is applied to the loss computation, resulting
in the loss concentrating on the semantically related body parts. Additionally, we apply body part masking to the input of the
mask transformer to further mitigate the combinatorial bias of body part actions.

where i refers to the number of body parts, and j is the index
of the quantized result in code sequences.

The overall objective function is defined as follows:

Lbp = αLrec + βLcom (4)

Semantic Mask Extraction
To introduce semantic bias into the loss objective, we first
randomly mask the textual description at the sentence level
resulting in semantically biased descriptions that do not en-
compass all body parts. Subsequently, a semantic-related
mask, denoted as mb

1:N , is extracted by LLM from the text
descriptions corresponding to each body part. In contrast to
traditional rule-based methods, LLM is capable of inferring
not only explicit but also implicit body parts mentioned in
the text, thereby outperforming rule-based methods when
addressing high-level action labels. For instance, consider
the description, ”The character is looking backward.” This
action primarily involves the neck and head, which can be
seamlessly identified by the language model. More details
on extracting semantic masks with LLM and a compari-
son between LLM and rule-based methods can be found
in the supplementary material.

Mask Transformer
The mask transformer is a decoder-only transformer. It takes
the quantized body part token sequences and text embedding
c from a pre-trained T5 encoder(Raffel et al. 2020) as inputs.
Similar to (Guo et al. 2023), we randomly mask out body
part tokens with a special [MASK] token and represent the
masked body part tokens as b̃. It is distinguished that differ-
ent from the previous masked generative method, our goal is
to predict semantic-related body part tokens given text con-
dition instead of masked tokens. To make textual description
more suitable for computing semantic bias, we also apply

random masking for textual description at the sentence level
independently. And a semantic-related mask mb

1:N for each
body part is generated in which the related body part is 1
and 0 otherwise. The output of the mask transformer is a
set of logits corresponding to the codebook size of BPVQ-
VAE. The overall objective function is to minimize the neg-
ative log-likelihood for the target body part tokens where the
negative log-likelihood is computed as the cross-entropy be-
tween generated probabilities with ground truth one-hot vec-
tor for each body part. The overall objective function con-
tains only the cross-entropy loss for semantic-related body
parts. Formally, the loss function is defined as follows:

Lmt =

N∑
i=1

mb
i logP(bi|b̃, c̃) (5)

Similar to the previous work, since we adopt residual
quantization which represents body part features as L or-
dered code sequence b ∈ RN×L where N refers to the num-
ber of body parts, We iteratively recover the body part to-
kens in order with the sum of previous body part tokens
subsequence. Specifically, when recover the ith body part
tokens b1:N,i where bn,i ∈ RD, the input to the mask trans-
former is b̃1:N,1:i = [

∑i
j=1 b1,j , ...,

∑i
j=1 bN,j ] where bn,i

is [MASK] if body part n is masked. The overall forward
process of mask transformer F (.) is defined as follows:

P1:N,i = Fθ(

i∑
m=1

b̃1:N,m, c) (6)

where c refers to the text embedding output by the pre-
trained T5 encoder. A learnable position embedding and a
body part embedding are added to the input body part to-
kens to make the mask transformer aware of the body parts
and which index of the L sequence it operates on.



Algorithm 1: Iterative Inference with Semantic Bias
Input: sentences c1:k

sentence level semantic mask m1:k

mask transformer F (.)
sample function S(.)

Parameter: length of the token sequence L
Output: body parts tokens sequence b ∈ RN×L

1: Let b1:N,1:L =[MASK].
2: for i = 1:L do
3: for j = 1:k do
4: b̂1:N,i = S(F (

∑i
k=1 b1:N,k, c1:j))

5: b1:N,i = mjb̂1:N,i + (1−mj)b1:N,i

6: end for
7: end for
8: return b

The mask ratio to conduct masked body part input is sam-
pled from a uniform distribution U [0, 1].

Iterative Inference with Semantic Bias
To close the gap between training and inference, we adopt
iterative inference. Similar to (Chang et al. 2023) and (Guo
et al. 2023), the process begins with all tokens masked and
our mask transformer predicts body part probabilities for
sampling the masked. Different from the previous method,
we also introduce semantic bias into the inference. Specifi-
cally, given textual description c1:k consists of k sentences, a
sentence level semantic mask m1:k ∈ RN is provided where
mi,n = 1 if ith sentence is semantic related to nth body part.
The whole process can be summarized as Algorithm 1.

Experiment
Settings
Datasets. We train and evaluate our method on the Pos-
escript dataset with 100,000 rule-based automatic captioned
poses and 6283 human-labeled data with mirror augmenta-
tion. The partitioning of the dataset into training and test
sets follows the same division as that used in the PoseScript,
ensuring consistency and comparability in our evaluations.
we have made several improvements to the automatic cap-
tion pipeline. These enhancements are designed to produce
captions that more closely mimic human annotation, both in
terms of linguistic naturalness and the accuracy with which
they describe the corresponding poses. The details on the
improvements in the automatic captioning pipeline can
be found in the supplementary material.
Implementation details. We leverage a pre-trained T5 lan-
guage model as our frozen text encoder to transform input
textual descriptions into a sequence of 1024-dimensional
embeddings. As the description for pose generation is often
longer than 77 which is the max input length for the CLIP
text encoder, the T5 language model can carry richer infor-
mation about detailed body part action. More implemen-
tation details on Body part VQ-VAE and Mask Trans-
former can be found in the supplementary.

Objective FID ↓ MPJPE ↓ ITM ↑ Diversity →
Ground Truth - - 0.89 -
Posescript(Delmas et al. 2022) 1.88 0.048 0.50 9.57
MDM*(Tevet et al. 2022) 0.90 0.042 0.62 9.71
MoMask*(Guo et al. 2023) 0.72 0.035 0.66 7.11
SMT(ours) 0.23 0.018 0.79 8.96

Table 1: Quantitative comparison with the state of the arts.
FID is Fréchet inception distance of motion semantics.
MPJPE denotes the mean per joint position error. ITM in-
dicates the image-text matching score.

Objective FID ↓ MPJPE ↓ ITM ↑ Diversity →
BERT-style (Devlin et al. 2018) 0.56 0.033 0.69 8.84
MASS-style (Song et al. 2019) 0.57 0.035 0.67 8.51
Semantic-biased-style 0.23 0.018 0.79 8.96

Table 2: Quantitative comparison on semantic bias. All three
masking objectives involve randomly masking input tokens.
The goal of the BERT-style objective is to predict masked
tokens, while the MASS-style approach aims to predict all
tokens. These two masking training strategies do not intro-
duce semantic bias. In contrast, the goal of our semantic bias
strategy is to predict tokens that are semantically related.

Evaluation metrics. We introduce Image-Text Matching
(ITM) score, Fréchet inception distance (FID), Average Po-
sitional Error (MPJPE), and Diversity as evaluation met-
rics. The Image-Text Matching (ITM) score is proposed by
(Zhang et al. 2023) which quantifies the visual-semantic
similarity between the source textual description and the
rendered generated pose. The generated pose is rendered
into three images from different views. The pre-trained Vi-
sion Language Model BLIP2 (Li et al. 2023) outputs the log-
its whether the images and their corresponding descriptions
are matched. Image-text matching (ITM) scores are the top
match logits across the three views.

Comparison with State of the Arts
In this section, we conduct a comprehensive comparative
analysis of our method against several state-of-the-art ap-
proaches in both human pose generation and human motion
generation. Given that descriptions for pose generation typ-
ically require more detail than those for motion generation,
we have adapted these human motion generation methods
to better suit the specific needs of human pose generation.
We replaced the original CLIP text encoder and transformer
encoder layers with a T5 encoder and transformer decoder
layers to improve the model’s capacity to handle detailed
text descriptions. The baseline methods includes Posescript
(Delmas et al. 2022), MDM (Tevet et al. 2022), and MoMask
(Guo et al. 2023).
Quantitative. The comparative analysis of our method
against the state-of-the-art approaches is presented in Table
1. Posescript embeds the text descriptions and human poses
into a shared latent space, neglecting the detail and demand
in the text description. The MDM and MoMask also fail to
maintain semantic consistency between body parts with de-
tailed text descriptions. Notably, our model exhibits the best
FID and ITM score among all methods, showcasing the ca-
pability of the proposed framework to produce high-quality
poses with semantics consistency.
Qualitative. In Figure 4, we present a qualitative compari-



The person is bending forward at the waist. Their knees are 
slightly bent. Their calfs are upright. Both feet are approximately 
shoulder width apart. Their arms are extended downwards 
towards the ground. The hands are close together, almost touching 
the floor. His elbows are slightly bent and their left elbow is 
about shoulder width apart from their right elbow. The head is 
aligned with the arms, pointing downwards towards the feet

He is throwing something with his right hand. He is looking to the 
left. His right elbow is partially bent. his right hand is at the same 
height as his left shoulder with his left foot located in the left 
front of his torso. His left knee is partially bent. His left elbow is 
barely bent and higher than his right elbow.  His left hand is 
further up than his neck and lying over his left shoulder. His right 
leg is extended behind with right knee slightly bent.

Posescript MDM* MoMask* Ours

Figure 4: Qualitative comparison. The result demonstrates that our method can effectively preserve the body part semantic
consistency with the description. From the first column to the last column are the text descriptions, posescript (Delmas et al.
2022), MDM* (Tevet et al. 2022), MoMask*(Guo et al. 2023) and our method respectively. More results can be found in the
supplementary.

Objective FID ↓ MPJPE ↓ ITM ↑ Diversity →
Posescript(Delmas et al. 2022) 1.88 0.048 0.50 9.57
Posescript + semantic bias 0.77 0.038 0.66 9.08
MDM*(Tevet et al. 2022) 0.90 0.042 0.62 9.71
MDM* + semantic bias 0.36 0.035 0.69 9.66

Table 3: Quantitative comparison with different backbones
networks. All metrics improve when the semantic bias train-
ing objective is introduced

son between state-of-the-art methods and our approach. This
comparison underscores the effectiveness of our method in
preserving semantic consistency. PoseScript (Delmas et al.
2022) struggles to accurately capture essential semantic el-
ements from detailed text descriptions. This limitation be-
comes particularly evident when addressing complex actions
with numerous details, such as the second kicking pose. In
such cases, PoseScript may not only overlook specific de-
tails but may also fail to grasp the overall semantics, result-
ing in significant errors in pose generation, such as produc-
ing a crouching pose instead of the intended kicking action.
MDM (Tevet et al. 2022) and MoMask (Guo et al. 2023), on
the other hand, are capable of preserving important semantic
content but fall short in capturing crucial details. In contrast,
our approach outperforms the other methods in terms of se-
mantic preservation, achieving the most reliable and accu-
rate pose generation based on detailed text descriptions.

Ablation Study
The effect of semantic bias. To rigorously evaluate the ef-
fectiveness of our semantic bias training objectives, we con-
ducted a high-level ablation study where we compared our
approach against two other masking objectives: BERT-style
(Devlin et al. 2018) and MASS-style (Song et al. 2019),
both of which lack a semantic bias component. Each of
these three masking methods involves randomly masking in-
put body part tokens, but they differ significantly in their
reconstruction goals. The BERT-style objective focuses on
reconstructing the masked tokens. In contrast, the MASS-
style objective aims to reconstruct all tokens. Our semantic
bias objective, however, specifically targets the reconstruc-

inference type FID ↓ MPJPE ↓ ITM ↑ Diversity →
inference without bias 0.27 0.022 0.76 9.33
inference with bias 0.23 0.018 0.79 8.96

Table 4: Quantitative comparison for inference with and
without semantic bias

tion of semantic-related tokens. This means that the training
process is particularly focused on ensuring that the model
accurately interprets and generates those parts most closely
related to the semantics of the input text. The quantitative re-
sults, as presented in Table 2, clearly demonstrate the bene-
fits of incorporating semantic bias into the training objective.
The introduction of semantic bias significantly enhances the
semantic consistency of the generated poses.
Semantic bias with different backbone. To demonstrate
the effectiveness of our proposed semantic bias training
objective, we integrate this training strategy with different
backbones. Specifically, we apply it to the Posescript and
MDM pipelines. The MoMask(Guo et al. 2023), which em-
beds the entire human pose into a single token, does not
support the body part semantic bias training objective and,
therefore, is excluded. By incorporating semantic bias, the
model is encouraged to establish associations between spe-
cific body part actions and their corresponding textual de-
scription, leading to more accurate and semantically consis-
tent pose generation. The quantitative results, presented in
Table 3, indicate that all metrics improve with the semantic
bias training objective. This enhancement is observed across
various baselines, substantiating that the semantic bias train-
ing objective can effectively enhance the semantic consis-
tency of pose generation across different architectures. This
finding highlights the potential of semantic bias as a power-
ful tool for refining the training process in text-to-pose syn-
thesis tasks and potentially in other generative tasks.
Iterative inference with semantic bias As we incorporate
semantic bias into inference, we also conduct an ablation
study on the effectiveness of the proposed inference method.
We compare our method with iterative inference without se-
mantic bias (Chang et al. 2023) (Guo et al. 2023), where



Someone is kneeling on her right knee. Her right knee is bent at an angle of almost 90 
degrees and is touching the ground. Her right foot is behind her torso, firmly planted on 
the ground. Her left elbow is in front of her chest, bent in an L-shape with her left hand 
near her right shoulder (Her left elbow is bent in an L-shape with her left hand reaching 
her left knee). Her left knee is bent at an angle of almost 90 degrees and her left thigh is 
parallel to the ground. Her left calf is erect. The right arm is stretched out to the right 
with the elbow slightly bent. Her head is turned to the right.

A person is standing on their right leg and looking to the left. The torso is straight and 
slightly turned to the right. Both legs are straight. The left shoulder is in front of the 
right shoulder, the left leg is stretched back to the left and the toe touches the ground.  
The right elbow is flexed to the maximum with the hand on the back of the head. The left 
elbow is slightly bent and the left hand is in front of the left hip (His both elbows are 
bent at an angle of almost 90 degrees with the  hands putting on the hips).  

Figure 5: Examples of body part editing. From the first column to the last column are the text descriptions, origin pose, and
modified pose. The original pose is generated with the original text description. The modified pose is generated using the mod-
ified description, where the strikethrough text is replaced with the red text. More results can be found in the supplementary.

the update rules b1:N,i = S(F (
∑i

m=1 b1:N,m, c)). At each
iteration, the masked body part tokens with the highest prob-
ability are preserved leaving remains still masked and the it-
eration repeats until all body part tokens are unmasked. The
quantitative results, as shown in Table 4.

body part number FID ↓ MPJPE ↓ ITM ↑ Diversity →
SMT2bodyparts 0.31 0.031 0.72 9.01
SMT3bodyparts 0.28 0.025 0.74 8.94
SMT5bodyparts 0.24 0.021 0.78 8.87
SMT6bodyparts 0.23 0.018 0.79 8.96
SMTjointlevel 0.33 0.031 0.70 8.89

Table 5: Quantitative comparison for different numbers of
body parts. as the body is divided more precisely, the preser-
vation of semantic consistency improves. The underperfor-
mance of joint-level SMT can be attributed to the limitations
of the LLM in accurately generating joint-level labels.

Body part division for semantic bias We further explored
the body part division by varying the number of body parts
and segmenting the human body into different levels of gran-
ularity. The SMT is tested using configurations of 2, 3, 5,
and 6 body part groups, as well as at the joint level. In the 2
body part groups configuration, the human body is divided
into an upper body group, encompassing the arms, head, and
torso, and a lower body group, comprising the legs. The 3-
group configuration further delineates the body into arms,
the main body (including the neck and head), and legs. The
5-group configuration subdivides the arms and legs into left
and right segments. The main body is further divided into
the neck and head for 6 groups. The quantitative results, as
presented in Table 5, demonstrate that as the body is di-
vided more precisely, the preservation of semantic consis-
tency improves. However, the model with joint-level seman-
tic bias performed worse than the 2 groups. This underper-
formance can be attributed to the limitations of the LLM in
accurately generating joint-level labels for text descriptions.
Despite various attempts to prompt the LLM to recognize
human body topology, it continues to encounter hallucina-

tions when faced with stochastic descriptions. These hallu-
cinations hinder the model’s ability to learn the correct cor-
respondences between body part descriptions and actions.
More details can be found in the supplementary

Application: Body Part Editing

In Fig. 5, we illustrate the capability of the Semantic Mask
Transformer (SMT) in body part editing tasks. The body part
can be freely selected. Specifically, we modify the textual
descriptions and then follow the same inference procedure
described in Algorithm 1. During the generation process,
we first generate poses based on the original descriptions.
We then modify the descriptions for several body parts and
regenerate the corresponding body part tokens. The quanti-
tative results demonstrate that our model effectively captures
the association between local pose semantics and their cor-
responding body parts, generating novel and accurate poses
that align with the modified descriptions.

Conclusions

In this paper, we introduce a novel method for detailed text-
conditioned human pose generation that leverages a mask
transformer combined with a BPVQ-VAE. The mask trans-
former is trained using a semantic-related mask training ob-
jective, specifically designed to enhance the model’s under-
standing of the semantic relationships between body part ac-
tions and their corresponding textual descriptions. By em-
ploying this training strategy, our Semantic Masked Trans-
former (SMT) model can generate poses that are not only
detailed but also semantically consistent with the provided
descriptions. Extensive experiments and comparisons with
multiple baselines demonstrate that our proposed method
effectively captures and maintains semantic consistency be-
tween the text descriptions and the generated poses, outper-
forming existing approaches in managing complex and de-
tailed pose generation tasks.
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